

Nutrient Sequestration using Algae with AD Systems

Kevin Feris (BSU), Maxine Prior (UI), Erik R. Coats (UI), Erin Searcy (DOE), Donna Post Guillen (INL), Sam Alessi (INL)

- USDA AFRI (Agriculture and Food Research Initiative)
 - Integrated Approaches to Climate Adaptation and Mitigation in Agroecosystems

- Adaptation
- Mitigation
- Reduce energy use, nutrient impacts, greenhouse gas production
- Increase carbon sequestration

- CH₄ and CO₂ emissions from dairy operations constitute ~2.5% of annual U.S. greenhouse gas (GHG) emissions
- Anaerobic digestion (AD) can reduce dairy
 CH₄ emissions while producing electricity,
 but...
 - Dairy ADs can be constrained economically
 - ADs also emit large quantities of CO₂ (another GHG)
- To decrease the Carbon footprint of dairies:
 - Sequester AD effluents (CO₂, nitrogen, phosphorus) by producing algae

Our Goal: Quantify and optimize algal C-sequestration and nutrient treatment from processed manure effluent streams

Chlorella vulgaris

AD effluent

PHBV effluent

Wastewater algae consortium

Algal biomass: C, N, P sequestered, value added commodity

Our Integrated Process

Our Integrated Process

Characteristics of AD and PHBV reactor effluents

	Digested Manure Effluent (mg·L ⁻¹)	Polyhydroxyalkonoate Reactor Effluent (mg·L ⁻¹)
Organic Acids		
Acetate	456.2	ND
Propionate	155.6	ND
Butyrate	96.5	ND
Valerate	41.1	ND
isoValerate	9.8	ND
Caproate	2.8	ND
Chemical Components		
Total dissolved nitrogen (N)	1226.0	499.5
Ammonia (NH ₃ -N)	760.8	59.2
Nitrate (NO ₃ -N)	<10	361.2
Total dissolved phosphorus (P)	96.2	33.3
Chemical oxygen demand (COD)	12,744.4	5,575.2
рН	8.3	8.4
Bacteria Load (CFU·mL ⁻¹)	2.06E+06	2.66E+03
Absorbance @ 680 nm	0.650	0.195

Phototrophic production by *C. vulgaris* grown in AD and PHBV

5 and 10% PHBV: highest growth rates, longer exponential growth phase **Result:** 3x to 4x the cell yield observed in the same concentration of AD effluent.

Phosphorus removal by algal cultures grown on AD and PHBV reactor effluent

Nitrogen removal by algal cultures grown on AD and PHBV reactor effluent

N-sequestration is dependent on the form of N and effluent concentration: **Removal of NH**₄⁺

N-sequestration is dependent on the form of N and effluent concentration: **Removal of NO₃**

Nutrient removal rates (AD vs. PHBV effluent)

	Anaerobic Digester Effluent			PHBV Effluent			
	5%	10%	20%	5%	10%	20%	
]	Rate of chan	ge of dissolv			over 21 day	S	
$(\mathbf{mg} \cdot \mathbf{L}^{-1} \cdot \mathbf{day}^{-1})$							
Dissolved Nitrogen (TDN)	0.52 (0.89)	0.95 (0.90)	-1.57 (0.52)	0.85 (0.12)	3.44 (0.73)	2.13 (0.59)	PHBV: faster N removal
Ammonia (NH ₃ -N)	0.04 (0.34)	0.78 (0.87)	0.38 (1.48)	N.D.	0.23 (0.00)	0.50 (0.06)	Temovar
Nitrate (NO ₃ -N)	N.D.	0.01 (0.03)	0.07 (0.07)	0.65 (0.03)	1.41 (0.12)	-0.77 (0.38)	
Dissolved Phosphorus (TDP)	-0.14 (0.10)	0.67 (0.23)	0.33 (0.64)	0.05 (0.09)	-0.04 (0.06)	0.11 (0.17)	ADE: fast P remova

Optical properties of AD effluent and PHBV reactor effluent

Effect of treatment on algal growth

Conclusions

- Algal treatment of AD and PHBV reactor effluent resulted in
 - Up to 75% N removal, up to 60% P removal
 - -3x-4x increase in cell yield when cultivated on PHBV effluent
- Nutrient/Carbon sequestration is dependent on
 - Effluent type, N species
 - Residual solids
 - Optical properties of effluents
 - These can be modified to influence algal growth rates
- Current work: determine effects of effluent properties, cultivation conditions, and pre-treatment strategies on algal biomass quality
 - Optimizing the algal component of the manure to commodities system for biofuels and/or bioplastics

Develop and deploy a web-accessible model to optimize the movement of carbon to PHBV & CH₄

- Decision-support for Digester-Algae IntegRation for Improved Environmental and Economic Sustainability (DAIRIEES), a webbased model
- Enhance understanding of essential processing steps needed for scale up to commercial levels

Acknowledgements

- Jerry Bingold
 - Innovation Center for US Dairy
- Bob Joblin
 - Cenergy USA, Inc.
- Jay Kesting
 - Western States Equipment Co.
- Bob Naerebout
 - Idaho Dairymen's Association, Inc.
- Center for Advanced Energy Studies, Idaho National Laboratory
 - Steve Aumeier, Ray Grosshans, Erin Searcy
- Funding:
 - USDA NIFA (Award #2012-68002-19952)
 - Center for Advanced Energy Studies (Award 00041394 Task Order 33)
 - EPA Science to Achieve Results (STAR) graduate fellowship program (Award FP-91736101).

Growth parameters (ADE vs. PHBV)

	Anaerobic Digester Effluent			Polyhydroxyalkanoate Reactor Effluent				
		(ADE)			(PHBV)			
	5%	10%	20%	5%	10%	20%		
Exponential	0.4	0.36	0.48	0.46	0.33	0.42		
growth rate (day ⁻ 1)	-0.04	-0.01	-0.03	-0.01	-0.01	-0.03		
Days of exponential growth	4	6	4	8	12	4		
Final 21 day cell count (cells·mL ⁻¹)	10,016,667 (883,648)	10,116,667 (625,167)	12,683,333 (5,998,819)	29,300,000 (2605,763)	40,416667 (2,729,621)	13,983,333 (625,167)		
Final cell count per mg N loading (cells/mg)	162.5 (13.7)	121.1 (24.2)	132.1 (71.3)	1,139.0 (143.8)	376.0 (24.8)	104.1 (11.2)		
Final 21 day biomass (g·L ⁻¹)	0.89 (0.08)	1.39 (0.16)	2.23 (0.54)	0.67 (0.05)	1.07 (0.23)	1.57 (0.01)		

Mean values (standard deviation), n=3. N.D. = none detected.

PHBV: longer log phase

PHBV: greater algal cell

yield

C fixed: 0.6 to 2 g/L of biomass

= ≈ 0.4 to 1.6 g of C fixed

| -1